q-HYPERGEOMETRIC DOUBLE SUMS AS MOCK THETA FUNCTIONS

نویسندگان

  • JEREMY LOVEJOY
  • ROBERT OSBURN
چکیده

Recently, Bringmann and Kane established two new Bailey pairs and used them to relate certain q-hypergeometric series to real quadratic fields. We show how these pairs give rise to new mock theta functions in the form of q-hypergeometric double sums. Additionally, we prove an identity between one of these sums and two classical mock theta functions introduced by Gordon and McIntosh.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PARTIAL THETA FUNCTIONS AND MOCK MODULAR FORMS AS q-HYPERGEOMETRIC SERIES

Ramanujan studied the analytic properties of many q-hypergeometric series. Of those, mock theta functions have been particularly intriguing, and by work of Zwegers, we now know how these curious q-series fit into the theory of automorphic forms. The analytic theory of partial theta functions however, which have q-expansions resembling modular theta functions, is not well understood. Here we con...

متن کامل

Mock Jacobi Forms in Basic Hypergeometric Series

We show that some q-series such as universal mock theta functions are linear sums of theta quotient and mock Jacobi forms of weight 1/2, which become holomorphic parts of real analytic modular forms when they are multiplied by suitable powers of q. And we prove that certain linear sums of q-series are weakly holomorphic modular forms of weight 1/2 due to annihilation of mock Jacobi forms or com...

متن کامل

MIXED MOCK MODULAR q-SERIES

Mixed mock modular forms are functions which lie in the tensor space of mock modular forms and modular forms. As q-hypergeometric series, mixed mock modular forms appear to be much more common than mock theta functions. In this survey, we discuss some of the ways such series arise.

متن کامل

k-RUN OVERPARTITIONS AND MOCK THETA FUNCTIONS

In this paper we introduce k-run overpartitions as natural analogs to partitions without k-sequences, which were first defined and studied by Holroyd, Liggett, and Romik. Following their work as well as that of Andrews, we prove a number of results for k-run overpartitions, beginning with a double summation q-hypergeometric series representation for the generating functions. In the special case...

متن کامل

The Bailey Chain and Mock Theta Functions

Standard applications of the Bailey chain preserve mixed mock modularity but not mock modularity. After illustrating this with some examples, we show how to use a change of base in Bailey pairs due to Bressoud, Ismail and Stanton to explicitly construct families of q-hypergeometric multisums which are mock theta functions. We also prove identities involving some of these multisums and certain c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012